博碩士論文 88521013 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:46 、訪客IP:3.138.204.208
姓名 莊文榮(Wen-Jung Chuang )  查詢紙本館藏   畢業系所 電機工程研究所
論文名稱 吸光區累崩區分離的累崩光二極體
(Separated Absorption Multiplication Avalanche Photodiode)
相關論文
★ 金屬-半導體-金屬光偵測器的特性★ 非晶質氮化矽氫基薄膜發光二極體與有機發光二極體的光電特性
★ 具非晶質n-i-p-n層之氧化多孔矽發光二極體的光電特性★ 低漏電流與高崩潰電壓大面積矽偵測器製程之研究
★ 具自行對準凹陷電極1x4矽質金屬-半導體-金屬光偵測器陣列的特性★ 非晶矽射極異質雙載子電晶體與有機發光二極體的特性
★ 蕭特基源/汲極接觸的反堆疊型非晶質矽化鍺薄膜電晶體★ 矽晶圓上具有隔離氧化層非晶質薄膜發光二極體之光電特性
★ 具非晶異質接面及溝渠式電極之矽質金屬-半導體-金屬光偵測器的暗電流特性★ 非晶矽/晶質矽異質接面矽基金屬-半導體-金屬光檢測器與具非晶質無機電子/電洞注入層高分子發光二極體之研究
★ 具非晶質矽合金類量子井極薄障層之高靈敏度平面矽基金屬–半導體–金屬光檢測器★ 具蕭特基源/汲極的上閘極型非晶矽鍺與 多晶矽薄膜電晶體
★ 大面積矽偵測器的製程改良與元件設計★ 具組成梯度能隙非晶質矽合金電子注入層與電洞緩衝層的高分子發光二極體
★ 非晶質吸光區與累增區分離之類超晶格累崩光二極體★ 具非晶質矽合金調變週期類超晶格薄膜複層之低暗電流高熱穩定度平面矽基金屬–半導體–金屬光檢測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文分為兩個主要部份。首先,設計一個與一般雙載子接面電晶體製程相容的非晶矽/單晶矽質吸光區累崩區分離的累崩光二極體(SAM-APD),並且利用半導體製程模擬軟體MEDICI與TSUPREM-4,計算元件特性和製程參數。最後將模擬結果實際應用於元件製程上,並完成元件的製作。
另一完成的研究主題是分別在非晶質超晶格結構(superlattice)中,加入p-i-a-SiC、p-i-n-a-SiC或p-i(a-SiC)-i-n(a-Si)非晶質複層的非晶質吸光區累崩區分離的超晶格累崩光二極體(SAM-SAPD)。這些元件都有相當高的光增益(optical gain),其中加入p-i(a-SiC)-i-n(a-Si)非晶質薄膜的元件具有最高的光增益。實驗結果顯示,利用在累增區中加入高電場及傳導帶不連續等區域所完成的元件具有較佳的光電特性。
摘要(英) First, a BJT compatible process were used to fabricate an amorphous/crystalline Si separated absorption multiplication avalanche photodiode (SAM-APD) in this study. The performance and process parameters of the designed SAM-APD were simulated by using the MEDICI and TSUPREM-4. Eight levels of mask were needed to fabricate the device and the finished devices had rather poor characteristics, such as low optical gain and photocurrent, due to process complexity. Further efforts in device processings are needed to verify the performances of designed SAM-APD.
Then three kinds of amorphous separated absorption multiplication superlattice avalamche photodiode (SAM-SAPD), each with additional p-n-a-SiC, p-i-n-a-SiC, or p-i(a-SiC)-i-n(a-Si) amorphous layers in substage of superlattice (SL), had been designed and fabricated successfully. These device had rather high optical gain, and the one with additional p-i(a-SiC)-i-n(a-Si) amorphous layers in substage of SL had the highest optical gain. The results of this study indicated that using high electric-field and conduction band-edge discontinuity in multiplication region of SAM-SAPD would improve its performance.
關鍵字(中) ★ 光二極體
★  分離
★  累崩
★  超晶格結構
★  非晶質
關鍵字(英) ★ amorphous
★  avalanche
★  photodiode
★  separate
★  superlattice
論文目次 Abstract ................................................ I
Table Captions ............................................... IV
Figure Captions ............................................... V
Chapter 1 Introduction ...............................................1
Chapter 2 Amorphous Silicon/Crystalline Silicon Separated
Absorption Multiplication Avalanche Photodiode (SAMAPD) ......................................3
2.1 Theory of Device Operation ...............3
2.2 Fabrication Process ................. 8
2.2.1 Design Considerations ...............8
2.2.2 Fabrication Processes ................9
2.3 Simulation .................25
2.4 Measurement Techniques .................32
2.4.1 Optical Band-gap .................32
2.4.2 Responsivity .................32
2.5 Experimental Results .................36
Chapter 3 Amorphous Separated Absorption Multiplication
Superlattice Avalanche Photodiode (SAM-SAPD).....40
3.1 Theory and Device Operation .................40
3.2 Fabrication Processes .................44
3.2.1 Design Considerations .................44
3.2.2 Fabrication Processes .................44
3.3 Experimental Results .................52
Chapter 4 Conclusions .................58
References .................59
Table Captions
Table 2-1 A list of the eight masks used to fabricate the SAM-APD. 12
Table 2-2 Specifications of the SAM-APD. .................17
Table 2-3 Deposition conditions and Eopt’s of various amorphous films.
Table 2-4 The deposition conditions of metal films .........24
Table 3-1 Deposition conditions and Eopt’s of various amorphous films. .................51
Figure Captions
Fig. 2-1The schematic cross-section of a SAM-APD ............6
Fig. 2-2Schematic energy-band diagram of a SAM-APD under
reverse-bias.........................................7
Fig. 2-3The process flow-chart of a SAM-APD................15
Fig. 2-4The PECVD system for depositing amorphous film.....................................................16
Fig. 2-5The annealing and drive-in conditions of the Buried layer.....................................................18
Fig. 2-6The annealing and drive-in conditions of the Down-ISO
regions............................................19
Fig. 2-7The annealing and drive-in conditions of the Top-ISO
regions............................................20
Fig. 2-8The annealing and drive-in conditions of the N+-regions.....................................................21
Fig. 2-9The annealing and drive-in conditions of the P+-regions.....................................................22
Fig. 2-10(a) The potential contours of the SAM-APD device, and....................................................27
(b) the total current vectors of the SAM-APD device.....................................................27
Fig. 2-11(a) The p+-region doping profiles and junction depths for various implanted doses, and
(b) the device current densities versus reverse-biasd voltage for various doses of P+-region..........................28
Fig. 2-12The device current densities versus reverse-biasd voltage for various depths of P+-region......................29
Fig. 2-13All of the doping concentration profiles for the device.....................................................29
Fig. 2-14(a) The incident light pulse, and...............30
(b) the device transient output photo-current.....................................................30
Fig. 2-15The normalized device gain versus frequency of incident light pulse.........................................31
Fig. 2-16The setup of UV/VIS/NIR spectrophotometer for measuring optical band-gap of amorphous film..........34
Fig. 2-17The setup for measuring device responsivity.......35
Fig. 2-18(a) The photo and dark I-V curves of Device 1 under
reverse-bias, and
(b) the optical gain of Device 1................37
Fig. 2-19(a) The photo and dark I-V curves of Device 2 under
reverse-bias, and
(b) the optical gain of Device 2................38
Fig. 2-18(a) The photo and dark I-V curves of Device 3 under
reverse-bias, and
(b) the optical gain of Device 3................39
Fig. 3-1The schematic cross-section of an amorphous SAM-SAPD
[24]...........................................42
Fig. 3-2Schematic energy-band diagram of an amorphous SAM-SAPD
under reverse-bias [24].........................43
Fig. 3-3The schematic cross-section along with the gas flow-rates for
the amorphous SAM-SAPD with additional p-n amorphous
layers in substage of SL (Device A)................47
Fig. 3-4The schematic cross-section along with the gas flow-rates for
the amorphous SAM-SAPD with additional p-i-n amorphous
layers in substage of SL (Device B)................48
Fig. 3-5The schematic cross-section along with the gas flow-rates for
the amorphous SAM-SAPD with additional p-i-i-n amorphous
layers in substage of SL (Device C)................49
Fig. 3-6Variations of optical gap of i-a- SiC:H with used carbon
hydride gas fractions (C/(C+Si)) in C2H2-SiH4,
C2H4-SiH4 and CH4-SiH4 gas mixtures [25].......50
Fig. 3-7(a) The photo and dark I-V curves of Device A under
reverse-bias, and
(b) the optical gain of Device A.................53
Fig. 3-8(a) The photo and dark I-V curves of Device B under
reverse-bias, and
(b) the optical gain of Device B.................54
Fig. 3-9(a) The photo and dark I-V curves of Device C under
reverse-bias, and
(b) the optical gain of Device C.................55
Fig. 3-10(a) The photo and dark I-V curves of Device D under
reverse-bias, and
(b) the optical gain of Device D.................56
Fig. 3-11A comparison of the optical gains for various amorphous
SAM-SAPDs...........................................57
參考文獻 [1]M. C. Teich, K. Matsuo, and B. E. A. Saleh, "Counting distributions and error probabilities for optical receivers incorporating superlattice avalanche photodiodes," IEEE Trans. Electron devices, vol. ED-33, pp. 1475-1488, 1986.
[2]R. J. McIntyre," Multiplication noise in uniform avalanche diodes," IEEE Trans. Electron Devices, vol. ED-13, pp. 164-168, 1966.
[3]G. E. Bulman, V. M. Robbins, K. F. Brennan, K. Hess, and G. E. Stillman, "Experimental determination of impact ionization coefficients in (100) GaAs," IEEE Electron Device Lett., vol. EDL-4, pp. 181-185, 1983.
[4]K. Brennan, "Theory of electron and hole impact ionization in quantum well and staircase superlattice avalanche photodiode structures," IEEE Trans. Electron Devices, vol. ED-32, pp. 2197-2205, 1985.
[5]H. Blauvelt, S. Margalit, and A. Yariv, "Single-carrier-type dominated impact ionisation in multilayer structures," Electron. Lett., vol. 18, pp. 375-376, 1982.
[6]K. Brennan, "Theory of the GaInAs/A1InAs-doped quantum well APD: A new low-noise solid-state photodetector for lightwave communication systems, " IEEE Trans. Electron Devices, vol. ED-33, 1653-1695, 1986.
[7]K. Brennan, "Theory of the doped quantum well superlattice APD: A new solid state photomultiplier," IEEE J. Quantum Electron., vol. QE-22, pp. 1999-2016, 1986.
[8]K. Brennan, "The pn junction quantum well APD: A new solid state Photodetector for lightwave communications systems and on-chip detector applications," IEEE Trans. Electron Devices, vol. ED-34, pp. 782-792, 1987.
[9]K. Brennan, "The p-n heterojunction quantum well APD: A new high-gain low-noise high-speed photodetector suitable for lightwave communications and digital applications," IEEE Trans. Electron Devices, vol. ED-34, pp. 793-803, 1987.
[10]K. Brennan, "Optimization and modeling of avalanche photodiode structures: Application to a new class of superlattice photodetectors, the p-i-n, p-n homojunction, and p-n heterojunction .APD's," IEEE Trans. Electron Devices, vol. ED-34, pp. 1658--1669, 1987.
[11]F. Capasso, "Physics of avalanche photodiodes," in Semiconductors and Semimetals, R. K. Willardson and A. C. Beer, Eds. Lightwave Communications Technology, W. T. Tsang, Ed. New York:Academic, 1985, vol. 22, part D, pp. 1-172.
[12]F. Osaka, T. Mikawa and O. Wada, “ Electron and hole impact ionization rates in InP/Ga0.47In0.53As superlattice,” IEEE J. Quantum Electron., vol. QE-22, pp. 1986-1991,1996.
[13]K. Brennan, K. Hess and F. Capasso, “Physics of the enhancement of impact ionization in multiquantum well structures” Appl. Phys. Lett., vol. 50, no. 26, pp. 1897-1899, 1987.
[14]W. Maes, K. De Meyer and R. Van Overstraeten, “Impact ionization in silicon: a review and update,” Solid-State Electronics, vol. 33, no. 6, pp. 705-718, 1990.
[15]K. M. Van Vliet, and L. M. Rucker, "Theory of carrier multiplication and noise in avalanche devices - Part I: One-carrier processes," IEEE Trans. Electron Devices, vol. ED-26, pp. 746-751, 1979.
[16]K. M. Van Vliet, A. Friedmann, and L. M. Rucker, "Theory of carrier multiplication and noise in avalanche devices - Part II: Two-carrier processes," IEEE Trans. Electron Devices, vol. ED-26, pp. 752-764, 1979.
[17]R. S. Fyath, J. J. O'Reilly, "Multilayer APDs producing up to two impact ionisations per carrier per stage: Optical receiver performance analysis," IEE Proc., vol. 135, Pt. J, pp. 101-105, 1988.
[18]J. N. Hollenhorst, "A theory of multiplication noise," IEEE Trans. Electron Devices. vol. 37, pp. 781-788, 1990.
[19]J. Tanc, Amorphous and Liquid Semiconductors, chap. 5, Plenum Press, pp. 175, 1974.
[20]G. E. Stillman, V. M. Robbins, and N. Tabatabaie, “III-V compound semi-conductor devices: optical detectors,” IEEE trans. Electron Devices, vol. ED-31, pp. 1643-1655, 1984.
[21]R. Chin, N. Holonyak, G. E. Stillman, J.Y. Tang, and K. Hess, “Impact ionization in multilayered heterojunction structures,” Electron. Lett., vol. 16, pp. 467-469, 1980.
[22]F. Capasso, W. T. Tsang, A. L. Hutchinson, and G. P. Williams, “Enhancement of electron impact ionization in superlattice: A new avalanche photodiode with large ionization rates ratio,” Appl. Phys. Lett., vol. 40, pp. 38-40, 1982.
[23]F. Capasso, W. T. Tsang, and G. F. Williams, “Staircase solid state photomultipliers and avalanche photodiodes with enhanced ionization rate ratio,” IEEE Trans. Electron Devices, vol. ED-30, pp. 381-390, 1982.
[24]J. W. Hong, W. L. Laih, Y. W. Chen, Y. K. Fang, C. Y. Chang and J. Gong, "Optical and noise characteristics of amorphous Si/SiC superlattice reach-through avalanche photodiode," IEEE Trans. Electron Devices, vol. ED-37, no.8, pp.1804-1809, 1990.
[25]D. Kruangam, T. Endo, M. Deguchi, W. Guang-Pu, H. Okamoto, and Y. Hamakawa "Amorphous Silicon-Carbide Thin-Film Light Emitting Diode", Optoelectronics Devices and Technologies, Vol. 1, No. 1, p. 67-84, 1986.
[26]Rong-Hwei Yeh, "Green-Blue Porous Silicon Light-Emitting Diode", Master thesis, Institute of Electrical Engineering, National Central University, Chung-Li, Taiwan, Republic of China, 1996.
[27]Yung-Hung Wu, "Optoelectronic Characteristics of a-SiC:H-based P-I-N Thin-Film LEDs Having a Thin Mo Buffer Layer in Contact with p-a-Si:H", Master thesis, Institute of Electrical Engineering, National Central University, Chung-Li, Taiwan, Republic of China, 1996.
[28]K. Tanaka, Glow-Discharge Hydrogenated Amorphous Silicon, Chap. 3, KTK Scientific Publishers, 1989.
指導教授 洪志旺(Jyh-Wong Hong) 審核日期 2001-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明